metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Heinz-Bernhard Kraatz, Todd C. Sutherland and Francis E. Appoh*

Chemistry Department, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, Canada S7N 5C9

Correspondence e-mail: fea687@mail.usask.ca

Key indicators

Single-crystal X-ray study T = 193 KMean $\sigma(\text{C-C}) = 0.005 \text{ Å}$ R factor = 0.038 wR factor = 0.095 Data-to-parameter ratio = 16.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N-Ferrocenoyl-labelled glutamate diethyl ester

Diethyl *N*-(ferrocenylcarbonyl)glutamate or *N*-ferrocenoylglutamate-(OEt)₂, [Fe(C₅H₅)(C₁₅H₂₀O₅N)], (I), is a derivative of *N*-ferrocenoylglutamate-(OBz)₂, the corresponding benzyl ester derivative published previously [Kraatz, Lusztyk & Enright (1997). *Inorg. Chem.* **36**, 2400–2405]. These redoxlabeled amino acid structures exhibit intermolecular hydrogen bonding that leads to extended networks in the solid state and exhibit typical ferrocene one-electron reversible electrochemical responses. The asymmetric unit of the structure contains two independent molecules, in which the most notable difference is in the conformations of the diethyl ester groups.

Received 27 October 2003 Accepted 13 November 2003 Online 22 November 2003

Experimental

The title compound was prepared by the addition of solid EDC [1ethyl-3-(3-dimethyaminopropyl)carbodiimide hydrochloride] to a stirred mixture of FcCOOH and HOBt (1-hydroxybenzotriazole) in CH₂Cl₂ at room temperature, which caused the orange slurry to change slowly into a clear solution. In a separate flask, H-Glu-OEt·HCl was dissolved in CH2Cl2 and Et3N and then added to the stirred reaction mixture. After stirring overnight, the reaction solution was washed consecutively with aqueous solutions of saturated NaHCO₃, 10% citric acid, saturated NaHCO₃ and finally distilled water. The organic phase was dried by anhydrous Na₂SO₄, filtered, and the solvent removed under reduced pressure, giving the crude orange product. The product was purified by column chromatography $(R_F = 0.5;$ hexane/EtOAc/CHCl₃ 1:1:2), giving an orange solid. Suitable crystals of the title compound were obtained by a slow diffusion of layered hexane into a solution of the compound in CH₂Cl₂. Yellow crystals suitable for X-ray crystallography were deposited after a few days.

Crystal data	
$[Fe(C_5H_5)(C_{15}H_{20}NO_5)]$	Mo $K\alpha$ radiation
$M_r = 415.26$	Cell parameters from 4477
Trigonal, P3 ₁	reflections
a = 11.4140(3) Å	$\theta = 2.2-25.7^{\circ}$
c = 26.7688 (17) Å	$\mu = 0.78 \text{ mm}^{-1}$
V = 3020.2 (2) Å ³	T = 193 (2) K
Z = 6	Prism, orange
$D_x = 1.370 \text{ Mg m}^{-3}$	$1.00 \times 0.23 \times 0.22 \text{ mm}$

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Data collection

Bruker PLATFORM /SMART 1000	8093 independent reflections
CCD area-detector	7430 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.025$
ω scans	$\theta_{\rm max} = 26.4^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(SADABS; Sheldrick, 1996)	$k = -12 \rightarrow 14$
$T_{\min} = 0.510, \ T_{\max} = 0.847$	$l = -33 \rightarrow 32$
16 410 measured reflections	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0498P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.038$	+ 0.5792P]
$wR(F^2) = 0.095$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.002$
8093 reflections	$\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$
487 parameters	$\Delta \rho_{\rm min} = -0.37 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	Absolute structure: Flack (1983)
	4131 Friedel pairs
	Flack parameter $= 0.010(12)$

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
	0.88	1.97	2.822 (3)	163
	0.88	2.01	2.861 (3)	162

Symmetry code: (i) -x + y, 1 - x, $z - \frac{1}{3}$.

All H atoms were placed in calculated positions, with C–H distances ranging from 0.98 to 1.00 Å, and N–H distances of 0.88 Å. They were included in the refinement in a riding-model approximation, with $U_{\rm iso} = 1.2U_{\rm eq}$ of the carrier atom.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

References

Bruker (1997). SMART, SAINT and SHELXTL, Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Figure 1

View of molecule 1 of (I), with the crystallographic labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

View of molecule 2 of (I), with the crystallographic labeling scheme. Displacement ellipsoids are drawn at the 30% probability level

Kraatz, H.-B., Lusztyk, J. & Enright, G. D. (1997). *Inorg. Chem.* 36, 2400–2405.
Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany.
Sheldrick, G. M. (1997). *SHELXS*97 and *SHELXL*97. University of Göttingen, Germany.